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Distributed Real-Time System Design:
Theoretical Concepts and Applications

Abstract: Distributed real-time system design raises new theoretical issues and
application challenges, beyond those of centralized systems. Rate monotonic
scheduling (RMS) theory has been successfully applied in the scheduling of cen-
tralized systems. RMS and its generalizations have been adopted by national high
technology projects such as the Space Station and has recently been supported
by major open standards such as the IEEE Futurebus+ and POSIX.4. In this
paper, we describe the use of generalized rate monotonic scheduling theory for
the design and analysis of a distributed real-time system. We review the recent
extensions of the theory to distributed system scheduling, examine the architec-
tural requirements for use of the theory, and finally provide an application ex-
ample.

1. Introduction

Real-time computing systems are critical to an industrialized nation's technological in-
frastructure. Modem telecommunication systems, factories, defense systems, aircraft and
airports, space stations and high energy physics experiments cannot operate without them.
Indeed, real-time computing systems control the very systems that keep us productive,
safeguard our liberty, and enable us to explore new frontiers of science and engineering.

In real-time applications, the correctness of a computation depends upon not only its results
but also the time at which outputs are generated. The measures of merit in a real-time sys-
tem include:

"* Predictably fast response to urgent events.

"* High degree 31 achedulability. Schedulab'!ty is the degree ef resource utiliza-
tion at or below which the timing requirements of tasks can be ensured. It can
be thought as a measure of the number of[timely transactions per second.

"* Stability under transient overload. When the system is overloaded by events
and it is impossible to meet all the deadlines, we must still guarantee the dead-
lines of selected critical tasks.

Real-Time scheduling is a vibrant field. Generalized Rate Monotonic theory (GMRS), one of
several important research efforts ( (10], [11]), is a useful tool that allows system developers
to meet the above requirements by managing system concurrency and timing constraints at
the level of tasking and message passing. In essence, this theory ensures that all tasks
meet their deadlines as long as the system utilization of all tasks lies below a certain bound,
and appropriate scheduling algorithms are used. This puts the development and mainte-
nance of real-time systems on an analytic, engineering basis, making these systems easier
to develop and maintain.

CMU/SEI-93-TR-2 1



Application of this theory to centralized system scheduling is well known [5]. The focus of
this paper is on recent generalization of this theory to schedule large scale distributed real-
time systems. In addition, we provide an example that illustrates some of the practical devel-
opment problems in the application of this approach in actual system development: to ad-
dress the increasing trend towards open system components and to control costs, system
designers have to use standardized subsystem components, which may not support real-
time computing needs. To reduce the number of processors in a system, sometimes both
real-time and non-real-time applications must co-exist in a processor and share the network
with real-time traffic.

The following is a high level view of our example application, which will be presented and
solved in detail later in this paper. Since a widely available standard network that supports
GRMS does not currently exist, we build our example system around the ANSI X3T9.5 FDDI
network as shown in Figure 1-1. Since IEEE Futurebus+ (896) and POSIX.4a support the
use of GRMS for real-time applications, we use them in our example as the station back-
plane and operating system respectively. From the application view point, our example con-
sists of both classical real-time surveillance and control applications, and multimedia ap-
plications.

Remote Audio/Video
Sensor Monitoring

Station

Network Tracking S5

Int Processor

FutureBus+

Sensor doto
tysem

Figure 1-1: Block Diagram of Distributed Real-Time System

The rest of the paper is organized as follows. Chapter 2 presents a synopsis of generalized
rate monotonic theory for centralized systems. Chapter 3 describes the theoretical exten-
sions necessary for applying GRMS to a distributed system. Chapter 4 introduces the no-
tion of scheduling abstractions, a technique for using and analyzing existing subsystems
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that are not designed to support GRMS. This is a very important aspect in the application of
this theory to real-wed systems. Chapter 5 describes a comprehensive example that il-
lustrates task schf'-iing within subsystems as well as end-to-end scheduling in a large real-
time system. F,- aiy we make concluding remarks in Chapter 6.
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2. Synopsis: GRMS in Centralized Systems

A real-time system typically consists of both periodic and aperiodic tasks. A periodic task ci
is characterized by a worst case computation time C, and a period Ti. Unless mentioned
otherwise we assume that a periodic task must finish by the end of its period. Tasks are
independent if they do not need to synchronize with each other. By using either a simple
polling procedure or a more advanced technique such as a sporadic server [9], the schedul-
ing of aperiodic tasks can be treated within the rate monotonic framework. In each case C
units of computation are allocated in a period of T for aperiodic activity. However, the man-
agement and replenishment of the capacity is different in each case.

The scheduling of independent periodic tasks was originally considered by Liu and Layland
[4]. The scheduling of periodic tasks with synchronization requirements can be addressed

by a simple extension to the original formula as follows (6]:

Theorem 1: A set of n periodic tasks scheduled by the rate monotonic algorithm
will always meet its deadlines, for all task phasings, if

C1  C2 + (C,+B,)
V i, <li<n, - + .. +_ i(2Ili-1)

T, T2 Ti

where Bi is the duration in whicii task ri is blocked by lower-priority tasks. This blocking
which is also known as priority inversion. The effect of this blocking can be modeled as
though task i'1s utilization i- increased by an amount BJTi. Theorem 1 shows that the dura-
tion of priority inversion reduces schedu/abi/ity, the degree of processor utilization at or be-
low which all deadlines can be met. Priority inversion in a centralized system can occur
when tasks have to synchronize and have common critical sections. This inversion can be
controlled by a priority ceiling protocol. The priority ceiling protocol is a real-time
synchronization protocol described in detail in Sha, Rajkumar, and Lehoczky [6]. Under this
protocol there are no mutual deadlocks, and a higher-priority task can be blocked by lower-
priority tasks only once. As a result, the worst case duration of blocking is the longest critical
section that may block a task.

A tutorial on GRMS that contains further details on these issues is given in Sha and
Goodenough [5].

CMU/SEI-93-TR-2
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3. Distributed System Extensions for GRMS

Scheduling in a network is different from scheduling in a centralized environment. In a cen-
tralized system, the centralized scheduler immediately knows of all resource requests. In
some networks, distributed scheduling decisions must be made with incomplete information.
From the perspective of any particular station, some requests could be delayed and some
may never be seen, depending on the relative position of the station in the network. The
challenge is to achieve predictability under these circumstances.

GRMS theory has to be extended to address this challenge. Certain basic concepts such as
schedulability and preemptiorn need to be revisited, and some concepts such as system con-
sistency need to be developed.

3.1. Extensions to Schedulability Concept

In a real-time system a particular activity is said to have "met its deadline" if the activity
completes by its deadline. When scheduling tasks on a processor, each task is said to have
met its deadline if it completes execution by a certain time before the end of its period. In a
communication network, the delay incurred by a message in reaching its destination is the
sum of the transmission delay and the propagation delay. The transmission delay is the
time between message arrival at a station and the time at which it is transmitted. The trans-
mission delay can be treated analogously to task execution on a processor. However, the
propagation delay can be longer than packet transmission times causing the transmission of
the next message to begin before a particular message reaches its destination. This occurs
in networks such as FDDI, IEEE 802.6 distributed-queue dual-bus (DQDB), and even IEEE
802.5 token rings when early token release is used. It is therefore useful to separate trans-
mission delay and propagation delay and consider the notion of transmission schedulability
[7]. A set of messages is said to be transmission schedulable (t-schedulable) if each mes-
sage can be transmitted before its deadline. Satisfaction of the end-to-end deadline of the
message can be found using the relation:

End-to-End Deadline >_ Transmission Deadline + PropagationDelay

For example, in an FDDI network, the worst case propagation delay is the walk time, defined
as the time taken by a single bit to traverse the ring if no station on the ring wanted to
transmit.

3.2. Preemption Control

From the user's viewpoint, a certain initial delay in setting up a periodic connection is ac-
ceptable. However, users expect a steady flow of information once the connection is set up,
and hence require that C packets be delivered every period T. We will discuss the need for
preemption control to achieve the above property.

CMUiSEI-93-TR-2



Preemption is the most basic concept in priority scheduling. Tasks are assigned priorities
according to some algorithm to maximize resource (e.g., processor) utilization. It has been a
long held belief that the idealized form of priority scheduling is to achieve instantaneous
preemption, i.e., whenever a high-priority task becomes ready. the resource is immediately
taken away from any lower-priority task and given to the high-priority task.

It has been assumed that increasing preemptability always leads to a minimization of priority
inversion, and that priority inversion is eliminated if a higher-priority task can always preempt
a lower priority task. However, this is not true in a distributed system. In a distributed sys-
tem there can be special situations when a particular preemption increases the delay experi-
enced by lower-priority connections, but does not reduce the worst case duration of priority
inversion. We call such situations over-preemption, and their effect is to reduce the schedul-
able utilization of the network. To overcome the undesirable effect of over-preemption, a
preemption control protocol is needed. In the following, we use a dual-link network based on
the IEEE 802.6 DQDB [8] as an example to introduce the two aspects of our preemption
control protocol, namely phase control and rate control. Finally, we will address the logical
relation between preemption control and the priority inversion.

IEEE 802.6 DQDB Operation

The IEEE 802.6 DQDB MAC [l] protocol specifies a pair of slotted links operating in opposite
directions. The links may be referred to as Plink and Rlink respectively as shown in Figure 3- 1.

so Flink

en

Si S2 ...Si Si+l .. Sn

slot
Rlink .44.. ten:

Figure 3-1: IEEE 802.6 DQDB Network

Fixed-length slots are generated by slot generators of the corresponding links. Although the figure
shows slot generators as separate functional units, the slot generation function can be embedded in
stafi. ns at the end of the links. Each station is able to transmrit and receive messages on both links.
The selection of the link to be used for transmission depends on the physical location of the destina-
tion. Reservation for a slot on the Flink is made on the RMink via a request and vice versa.

The operation of the protocol is based on a single busy bit, indicating whether the slot is used or free,
and a request bit per slot for each priority level. Four priority levels are supported. Each priority level
represents a separate access queue. A station wishing to transmit at a certain priority on Rink, issues a
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request in a slot on Rlink by setting the proper request bit. It also places its own request into its access
queue at the correct priority. Each station on seeing a request, enqueues it in its access queue at the
correct priority. Every station on seeing a free slot discards the top request from its highest priority
non-empty access queue, because the slot has been previously reserved by another station. If the top
request is the station's request then it transmits in the slot on the Flink in addition to removing the
request from its access queue. The access queues are implemented using a set of two counters for each
priority level. Details may be found in [1].

The current IEEE 802.6 protocol does not have adequate mechanisms to ensure correct operation in a
real-time distributed scheduling environment [3]. As a result, it exhibits unpredictable behavior under
certain conditions [2,3]. The distributed scheduling extension to GRMS reported in this paper has
been the result of studying these problems. Finally, IEEE 802.6 implements only 4 priority levels. As
we will see in Chapter 4, this also results in a reduction of schedulability. However, IEEE 802.6
provides high bandwidth over a long distance and the problems mentioned here can be solved by
extensions to the standard [31 or by the development appropriate scheduling abstractions.

References

1. IEEE 802.6 Distributed Queue Dual Bus - Metropolitan Area Network, Draft Standard,
Version P802.6/D15, October 1990.

2. Van As, H. R.; Wong, J. W.; and Zafiropulo, P. "Fairness, Priority and Predictability of the
DQDB MAC Protocol Under Heavy Load", Proceedings of the International Zurich
Seminar, March 1990, pp. 410-417.

3. Sha, L.; Sathaye, S.; and Strosnider, J. "Scheduling Real-Time Communication on Dual Link
Networks", 13th IEEE Real-Time Systems Symposium, December 1992.

4. Van As, H. R.; Wong, J. W.; and Zafiropulo, P. "Fairness, Priority and Predictability of the
DQDB MAC Protocol Under Heavy Load", Proceedings of the International Zurich
Seminar, March 1990, pp. 410-417.

5. Sha, L.; Sathaye, S.; and Strosnider, J. "Scheduling Real-Time Communication on Dual Link
Networks", 13th IEEE Real-Time Systems Symposium, December 1992.

Example 1: Consider a dual-link network with three stations, as shown in Figure 3-2.
Let the delay between S1 and S2 be 10 slots and between S2 and S3 be 1 slot as
shown. Let S! and S3 be transmitting as follows: S1 has a low-priority connection that
uses 100 slots every 10000 slots. S3 has a medium priority connection that wants to
transmit in 1 slot every 10 slots. This leads to a slot usage pattern as shown. Slots
labeled L are used by S1, and the slot labeled M is used by S3. Notice that S] has
released an empty slot so that S3 may transmit once every 10 slots are it requires.
Now let S2 start a new high-priority connection that needs to transmit in 1 slot every 4
slots. Since S2's request has higher priority, it preempts S3's request in S2's queue
and S2 will transmit in the unused slots that were meant for S3. The first of the slots
released by Sl for S2 will take 20 units of time after S2's first request to reach S2 .
Until this time since S2 can only transmit in slots meant for S3, S2 can transmit only
one slot in 10 which is less than it needs. As a result, even though S3's connection is
interrupted, S2 is not t-schedulable, resulting in an erratic connection. Therefore the
preemption of S3's request is a form of over-preemption.

To correct the problem in the above example we need to prevent Station S2 from using slots

CMUISEI-93-TR-2



Free slot for u l L L L1L
by S3
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*Si S2 S3
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Connection Connection
Priority Priorty

Connection Prioity L H 114 M 1/10 slots
100/10000 slots

Figure 3-2: Preemption Control Example

released for station S3. This means that S2 should delay its slot use for 20 slot times after its
first request, which is the round trip delay between S2 and the slot generator for the Flink.
After this time, slots released by S1 in response to S2's request will reach S2. This is tne
phase control aspect of preemption control.

However, phase control by itself is insufficient. During the 20 unit delay 5 cells are buffered
at S2. After the 20 unit delay, only 1 slot in 4 will be released for use by S2 . Hence S2 at-
tempts to transmit all 5 slots as soon as possible, then connection from S3 will again be
disrupted without improving S2 's worst case end-to-end latency. Observe that the 20 unit
delay will add to Sis worst-case delay irrecoverably. After the connection is set-up, the
destination expects 1 cell every 4 slots; therefore, attempting transmission of all 5 cells as
soon as possible does not improve S2's worst-case performance. Hence, S2 should only
transmit one slot every 4, after the round-trip delay of 20 slot times. This is the rate control
aspect of preemption control. With phase and rate control, the connections for both S2 and
S3's will be transmission schedulable.

Finally, we want to point out that from an implementation viewpoint, the preemption control
occurs at a higher layer than the priority queueing mechanism. Prioritized packets released
by preemption control protocol into the MAC layer will follow usual priority queueing rules as
in a centralized system.

3.3. System Consistency

As discussed before, stations in a distributed system may have incomplete or delayed infor-
mation of the system state. This may lead to inconsistent views of the system state, as il-
lustrated by the following example:

Example 2: Consider three stations Sc, Sb, and Sa, in a dual-link network as shown in

10 CMU/SEI-93-TR-2



Figure 3-3. Suppose Sb enters its own request Rb in its transmission queue and then
attempts to make a request on the Rlink. Let Sb be prevented from making a request
on Rlink by higher-priority requests until request Ra by station Sa passes by. On the
request stream, Ra precedes Rb while in Sb's transmission queue Rb precedes Ra.
After the requests are registered in station SO, the transmission queue of Sc will have
Ra preceding Rb, which is inconsistent with the queue of station Sb-

Slot Flink

Figure 3-3: Inconsistent Station Queues in an IEEE 802.6 DQDB Network

To address this problem we introduce the concept of system consistency. System consis-
tency can be defined as follows: In a distributed system it is possible for two request entries
to exist in multiple queues. For example, two requests can simultaneously exist in multiple
station queues in a dual-link network [1]. A system is said to be consistent if and only if the
order of the same entries in different station queues is consistent with each other. For ex-
ample in a dual-link network, if request R, and request R2 both exist in queue Qa and queue

Qb, and if is ahead of R2 in Qa' then R1 must also be ahead of R2 in Qb"

The inconsistency problem can lead to conflicts between distributed scheduling actions. In-
consistency can be avoided by the following rule: A station is not permitted to enter its re-
quest in its own queue until it has successfully made the request on the link. This makes the
entries in each queue consistent with the ordering of requests on the link. Therefore all the
queues will be consistent with each other. In the above example, station Sb cannot enter its
request in its queue until it can make a request on the link. Therefore, Sb's request will be
after Sa's request, both on the link and in Sb'S queue.

CMU/SEI-93-TR-2 11



In the preceding paragraphs we have highlighted fundamental new issues in distributed real-
time system design. These issues are intrinsic to a wide area network where communication
delays are long and scheduling has to be carried out in parallel by distributed stations with
partial or delayed information. Any distributed real-time system protocol must address at
least some of these issues.

A formal description of the above concepts is described as a coherent reservation protocol
(CRP) and a preemption-control protocol [8]. The important theoretical result of this work is
summarized by the following theorem:

Theorem 1: For a given a set of periodic connections in a dual-link network that
follows CRP, if the set of connections is schedulable in a centralized preemptive
priority-driven system with zero (negligible) propagation delay, then the set of con-
nections is transmission schedulable in a dual-link network.

The importance of this theorem is that even in a wide area network with incomplete infor-
mation, scheduling decisions can be made as though it is a centralized system. This allows
us to seamlessly use GRMS in the analysis of such systems.

12 CMU/SEI-93-TR-2



4. Scheduling Abstractions

GRMS assumes preemptive, priority scheduling. Ideally, each distinct period corresponds to
a distinct priority level. However, only a limited number of priorities can be supported by
hardware. The effect of limited priority levels is reduced schedulability as illustrated by the
following diagram [7]:

1.0

=0.8-

0.6

U

0.4

• 0.2

Number of priority bits

Figure 4-1: Schedulability Loss vs. The Number of Priority Bits

Figure 4-1 plots the schedulability as a function of priority bits, relative to the schedulability
with as many priority levels as needed under the condition that the ratio between the largest
and t-'3 shortest period is 100,000 [7]. As can be seen, the schedulability loss is negligible
with 8 encoded priority bits, which corresponds to 256 priority levels. In other words, the
worst-case schedulability obtained with 8 priority bits is close to that obtained with an un-
limited number of priority levels.

To use GRMS for the development of real-time computing systems, we would like to use
subsystems that support the use of GRMS such as Futurebus+, POSIX.4 and Ada 9x. How-
ever, we may have to use some components that do not support GRMS. In this case, we
need to develop a scheduling abstraction for the sub-system so that it can be treated as if it
supports GRMS. Although the scheduling abstraction allows the use of GRMS, it comes at
cost of reduced schedulability due to the lack of direct support. With scheduling abstrac-
tions, we can provide application developers a consistent scheduling interface that allows
them to develop applications as if every sub-system supports GRMS. In the following, we
demonstrate the creation of scheduling abstractions by using the FDDI timed token protocol
as an example.

CMU/SEI-93-TR-2 13



Fiber Distributed Data Interface
FDDI is a 100 Mbit/s Local/Metropolitan Area Network that has gained recent popularity. FDDI is a
token ring protocol that uses a timed-token access method [1]. In a token rotation media access
protocol, stations are connected to form a ring. All messages move around the ring and are repeated
by each station through which they pass. A station reading its own address as the destination copies
the packet and then passes the packet to the next station in the ring. Once the frame reaches the source
station, it is removed from the ring. The permission to transmit is granted to a station that is in
possession of a special type of frame called a token. The time for a token to traverse an idle ring is
called the walk rime, denoted here as WT.

Under this protocol, stations on the network choose a target token rotation time (TTRT). A station in
the FDDI protocol can transmit in either synchronous or asynchronous mode. Each station is allocated
a synchronous capacity, which is the maximum time a station is permitted to transmit in synchronous
mode every time it receives the token. Synchronous capacities of each station are restricted to a
pre-allocated fraction of (TTRT-WT), such that the cumulative synchronous capacity of the entire
network is bounded by (TTRT-WT). When a station receives a token, it first transmits its synchro-
nous traffic for an amount of time bounded by its synchronous capacity. Then it may transmit
asynchronous traffic only if the the time since the previous token departure from the same station is
less than TTRT. This protocol forces the token to rotate at a speed such that the time between two
consecutive token visits is boinded by 2*TTRT [2]. In a network that uses only synchronous mode,
time between consecutive token arrivals is bounded by one TTRT.

References

1. FDDI Token Ring Media Access Control -- ANSI Standard X3T9.5/83-16, 1987.
2. Sevcik, K. C. and Johnson, M. J. "Cycle Time Properties of the FDDI Token Ring Protocol",

IEEE Transactions on Software Engineering, SE-13, No. 3, 1987, pp 376-385.

A real-time scheduling analysis of FDDI for the case of one periodic connection per station
has been developed [2]. In this paper, using the normalized proportional allocation scheme
in Agrawal, Chen, Zhao, and Davari [2], we create a scheduling abstraction when there are
more than one periodic connections per station. In the development of ,his abstraction, we
need to consider priority granularity, priority inversion, system consistency, pre-emption con-
trol, and transmission schedulability.

In an FDDI network that uses only synchronous mode, each station Si can transmit once
every TTRT for an amount equal to an assigned synchronous capacity Hi. Therefore the
resource (network) is allocated to stations in a time-division multiplexed fashion, with no pri-
ority between stations. As an example, Figure 4-2 shows the transmission sequence from
three stations S1, S2, and S3, allocated bandwidths of H 1 , H 2 , and H 3 respectively. Hence it
may appear from Figure 4-1 that the schedulable utilization is zero. However, the order of
message transmissions from each station may be prioritized. If each station implements
sufficient priorities to use its dedicated portion of the bandwidth, then there is no
schedulability loss within stations. However, since there is no priority arbitration between
stations, a station with the token can transmit lower-priority messages even when high-
priority messages are waiting. In this sense, it is a bounded priority inversion and limits the
schedulable utilization of the network.

14 CMU/SEI-93-TR-2



time

Figure 4-2: Transmission sequence from three stations in synchronous mode

A message must satisfy these conditions to be schedulable in an FDDI network that
operates in synchronous mode:

"* Each connection's period T, must satisfy the relation T>TTRT.
"* Each station Si must be allocated enough synchronous capacity Hi so that each

connection in the station is t-schedulable.

A simple scheme for synchronous bandwidth allocation is the normalized proportional
scheme suggested by Agrawal, Chen, Zhao, and Davari [2]. The total available bandwidth
on each token rotation is given by (1TRT-WT). The normalized proportional allocation
scheme gives each station a fraction of this bandwidth, consistent with that station's con-
tribution to the total network utilization. Therefore, the bandwidth Hi allocated to station S, is
given by:

Hi = -2 (TTRT-WT)
U

U, is the network bandwidth utilized by station Si and U=UI+... +Un. TTRT is the target

CMU/SEI-93-TR-2 15



token rotation time and WT is the walk time. The following example demonstrates this for-
mula:

Example 3: Suppose we have three periodic messages T1, T2 and T3, to be trans-
-nitted from three stations S1, S2, and S3 respectively, on an FDDI network. Let the
TTRT be 8 3nd the walk time WT be 1.

"* Message -tj: C1 = 7; T1 = 100

"* Message C2: C2 = 10; T2 = 145

"* Message ,2: C3 = 15; T2 = 150

where C, is the transmission time and T, is the period of message ci. The utilization
of the above message set, U = 0.239. Applying the above formula, H, = 2.05, H2 =

2.02, H3 = 2.93.

Consider the application of GRMS to an FDDI network that transmits only in synchronous
mode. Let synchronous bandwidths be allocated to stations by some technique such as the
above formula. Notice that if each station uses its allocated synchronous bandwidth, the
actual token rotation time (TRT) (time between consecutive token arrivals at the station) at-
tains its maximum possible value TTRT. However if any station does not use its allotted
bandwidth, then the token rotates faster than TTRT.

Consider any station $i in the network. Let the capacity allocated to the station be Hi. Let
the station be a source of periodic messages xj = (CIJ,T11), T-1- = (C2,Tj),
"T.1 = (CTpJd). The station can transmit for up to Hi units of time, every TTRT.

GRMS can be applied to scheduling messages in this station as follows: In addition to the
message set that must be transmitted, the station can be considered to have another
"message" to transmit. The period of this message is the actual token rotation time TRT.
The "transmission time" of this message is given by (TRT-Hi). We refer to this task as
Token Rotation Message Ttr" The token rotation message represents the time that the sta-
tion is prevented from transmitting every token rotation. The longest period of the token
rotation task is TTRT. A necessary condition for schedulability is that the period of the
highest frequency message must be longer than TTRT. Note that the actual token rotation
time can be shorter than TTRT if other stations do not completely use their synchronous
allocations. However, station Si is guaranteed Hi amount of bandwidth in every token rota-
tion cycle. Hence, if connections in Si are schedulable in the longest cycle (TTRT), they are
also schedulable in any shorter cycle.

The FDDI scheduling abstraction described above has two levels of scheduling. At the
higher level, the resource capacity is allocated between applications in a time division mul-
tiplexed (TDM) manner. Within each allocation, the resource schedules activities using
GRMS. This abstraction can be directly used for sharing a processor between real-time and
non-real-time applications. In this case, we create a cycle and allocate portions of the cycle
to real-time and non-real-time activities respectively. Observe that similar to FDDI, the cycle
has to be no greater in length than the period of the highest frequency real-time task. The
TDM switching overhead can be treated similar to the walk-time in the FDDI case.
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Finally, consistency between station queues is not an issue since each station has its own
dedicated bandwidth. Preemption control is still necessary when a new connection has to
be established and synchronous bandwidth has to be reallocated. In this case, the connec-
tion should first exercise phase control and avoid transmitting until bandwidth is allocated for
the new connection. Furthermore, the new allocation should exercise rate control and not
transmit all its accumulated packets. Finally, the concept of transmission schedulability is
directly applicable in this abstraction as will be discussed in Chapter 5.
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5. Example Application

We have reviewed the theory for applying GRMS to a distributed system and developed a
scheduling abstraction for FDDI, the only component in our system that does not directly
support GRMS. This example illustrates how to apply GRMS extensions to schedule a distri-
buted system that consists of both real-time control activities and multimedia communica-
tion. This example will illustrate the following concepts:

"* Management of end-to-end deadline by partitioning into subsystem deadlines

"* Sharing of a processor by both real-time and non-real-time activities

"* Application of the FDDI scheduling abstraction
"* Management of propagation delay and jitter

5.1. Description of Example

Consider the system in Figure 1-1. It is built around an FDDI network. Station S5 is a mul-
tiprocessor built around a Futurebus+ backplane. The control processor in station S5
receives a variety of sensor, audio and video information, from both local and remote
sources. There exists an end-to-end deadline from each source to the control processor.
The end-to-end deadline is the permissible delay between the instant the information is cap-
tured at the sensor, to the instant the system outputs its response to the information. We
assume that the priority ceiling protocol is used for task synchronization. A high-level de-
scription of the data flow in this example system is as follows. All time-units in the following
example are milliseconds.

Traffic Across Network:

"• Station SI: Remote sensor information is captured and transmitted ac-oss the
network to the control processor in Station S5. The station transmits 1.0 Mbits of
data every 150 . Also sends 5 Mbits of data every 100 to Stations 2 and 4.

"• Station S3: Video monitoring station captures audio and video information and
transmits it over the network to the control processor in Station 5. The required
end-to-end deadline is 100. The video source is 1024x768 pixels per frame at
24 bits/pixel and 30 frames/sec. Three CD quality audio channels sampled at
44.1 Khz with 32 bits/sample are also transmitted.

Workload In Station S5

* Signal Processor Tasks: The local sensor takes an observation every 40. To
reduce unnecessary bus traffic the signal processing task processes the signal
and averages it every 4 cycles before sending it to the tracking processor.

* The tracking proce.c-:'r tasks: After the task executes it sends the result to the
control processor with a period of 160. Task c3 on the control processor uses
this tracking information. In addition, the end-to-end latency of the pipeline of
data flow from the sensor to the control processor should be no more than 785.

* Control Processor Tasks: The control processor has additional periodic and
aperiodic tasks which must be scheduled.
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" Aperiodic event handling with an execution time of 5 and an average
inter-arrival time of 100.

"* A periodic task for handling local feedback control with a computation re-
quirement and a given period. Task T2: C2 = 78; T2 = 150;

"* A periodic task that utilizes the tracking information received. Task T3: C3
=30; T3 = 160;

"• A periodic task responsible for reporting status across the network with a
given computation time and period. Task C4: C4 = 10; T4 = 300;

"* In addition there is an existing non-real-time application which requires
9% of the CPU cycles to meet its performance goals.

5.1.0.1. Partitioning of End-to-End Deadlines
When a message is sent within a station, it can be implemented by passing a message
pointer to the receiving task and hence can be treated as any other OS overhead. However.
when a message is sent outside the processor boundary, an integrated approach to assign-
ing message and task deadlines needs to be developed. Consider the situation in Figure
1-1:

"* The sensor takes an observation every 40.
"* The signal processing task processes the signal, averages the result every 4

cycles, and sends it to the tracking processor every 160.
"* The tracking processor task executes with a period of 160. It then sends a

message to the control processor
"* Task 'C3 on the control processor that uses the tracking information has a com-

putational requirement of 30, and a period of 160 as given Pbove. Recall that in
order for the control processor to respond to a new observation by the sensor,
the end-to-end laten y needs to be less than 785.

A guiding principle in partitioning the deadline is to try and minimize the impact of workload
changes in a subsystem and to contain the impact within the subsystem. If each resource is
allowed a full period delay, each subsystem can be analyzed as if it is an independent
resource. An alternate approach is to determine the completion time at each resource and
the end-end delay is the sum of the completion times. This approach is more sensitive to
workload changes.

Finally, when a task is scheduled on multiple resources in series, it may arrive at the next
resource well before its deadline on the current resource. If we schedule the task immedi-
ately upon its arrival, it will create the jitter problem as illustrated below:

Example 4: Consider two resources R, and R2 connected in series. Assume task T,
has a period of 10. Furthermore, x., is allocated a full period on each resource, and it
uses each of the two resources for 5 units. Let task r2 use only the second resource
for 3 units, with a period of 12 units. Let the first instance of 'r, arrive at R, at t = 0,
and let the first instance of r2 arrive at R2 at t = 10.

Suppose the first instance of ri at resource R1 completes its execution and arrives at
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R2 at t = 10. Since c1 has higher priority than that of c2 , it will immediately use R2,
preempting 12 . Observe that the second instance of cl arrives at RI at t = 10. Sup-
pose this instance is not delayed at RI. Then at t = 15, the second instance of r1 will
begin to use R2, further preempting t2 's starting time to t = 10. As a result '[2 will
miss its deadline at t = 12.

The jitter effect can be easily controlled by a simple rule: a task becomes ready to use a
resource at the beginning of a new period. Using this rule in the above example, the second
instance of t 1 will be buffered and will become ready to use R2 only at t = 20. In the follow-
ing discussion we assume that this rule is enforced. It should be noted that jitter control is a
special case of the phase control aspect of preemption control.

The steps involved in deadline partitioning are as follows: First we try to use the rate
monotonic priority assignment. Since rate monotonic analysis guarantees end-of-period
deadlines, we assume that the end-to-end delay is the sum of the period for each resource.
Since the signal processor averages four cycles, each 40 units long, its delay is up to 160.
Each of the other resources has a delay up to one period which is 160. That is, the total
delay using rate monotonic scheduling is bound by 4*40 + 160 + 160 + 160 + 160 = 800. If it
were less than the allowable delay then rate monotonic priority assignment could be used
for all the resources.

However the specified maximum allowable latency is 785. Hence we may need to use
deadline monotonic scheduling for at least some of the resources in the path. From a soft-
ware engineering viewpoint, it is advisable to give a full period delay for global resources
such as the bus or the network since their workload is more susceptible to frequent
changes. Since there are two bus transfers involved we attempt to assign a full period to
each. We also attempt to assign a full period to the signal and tracking processors. Hence
the required completion time of the control processor task C3 should be no greater than
785-4x(160)= 145. We therefore assign a deadline of 145 to control processor task r3 .

Deadline Monotonic Scheduling

The deadline monotonic scheduling algorithm is a generalization of the rate monotonic scheduling
algorithm. Rate monotonic scheduling assumes that the deadline of a periodic task is at the end of
each period. That is, the period represents the window of time within which a task must initiate and
complete its execution. Liu and Layland proved that it is optimal to give tasks with narrower
windows higher priorities. They referred to this priority assignment method as the rate monotonic
scheduling algorithm [2].

However, a task may have its deadline before the end of its period, resulting in a window narrower
than its period. Leung and Whitehead proved that it is still optimal to assign higher priorities to tasks
with narrower windows. They referred to this priority assignment method as the deadline monotonic
scheduling algorithm [1].
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5.1.0.2. Scheduling Tasks on the Control Processor
We will concentrate on scheduling analysis of tasks in the control processor using the com-
pletion time test. Scheduling the backplane and other processors is similar. First, we need
to create two virtual processors to separate the real-time and non-real-time applications. We
select the length of the TDM cycle to be the same as the shortest period among the real-
time tasks, 100, and the virtual processor switching overhead to be 0.5. Out of 100, 9 will be
allocated to non-real-time activities and 90 to real-time virtual processor, with one unit lost in
switching overhead.

Completion Time Test
The completion time test is a faster algorithm to test the schedulability of a task set than the schedul-
ing point test that is usually used. It is based on the critical zone theorem (1] which states that if a
task meets its first deadline even when all higher-priority tasks become ready at the same time then it
can meet all future deadlines. Consider any task T. with a period T., deadline DTn, and compu-
tation C.. Let tasks 'tl to r.-I have higher priorities than %. Note that at any time t, the total
cumulative demand on CPU time by these n tasks is:

Wn~t) = jt

The term rt re resents the number of times task -. arrives in time t and therefore C[ !T.1
represents its demand in time t. For example, let T1 = 10, = 5 and t = 9. Task r demands 5 units of
execution time. When t = 11, task r1 has arrived again and has a cumulative demand of 10 units of
execution. Suppose that task 'r completes its execution exactly at time t before its deadline Dn. This
means that the total cumulative demand from the n tasks up to time z, W.(t), is exactly equal to t, that
is, Wn(t) = t. A technique for finding this time is given in Figure 5-1.

Set to --

tj *-- w/to);
t2 <-- WOOtl;

tk _ w/tk-1);

Stop when RX,0k = tk)

Figure 5-1: Finding minimum t, where WiMt t
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Example 5: Consider a task set with the following independent periodic tasks:

" Task-z: C1 =f20; T, = 100;D 1 = 100;
" Taskc 2: C2 = 90; T2 = 145; D 2 = 145;

Task Zl is clearly schedulable. The schedulability of 2 can be tested as follows:

t0 =C 1 +C 2 =20+90= 110

tI = W2 (t0) = 2C1 + C 2 = 40 + 90 = 130

t2 = W2(tl) = 2C 1 + C2 = 40 + 90 = 130 = tI Hence task T2 finishes at 130 and is
schedulable.

References

1. Liu, C. L. and Layland J. W. "Scheduling Algorithms for Multiprogramming in a Hard Real
Time Environment", JACM, 1973.

Let the real-time task set in the control processor execute on the real-time virtual processor.
The effect of the TDM cycle spent in non-real-time and overhead processing can be
modeled as a high-priority task with a period of 100 and execution of 10. Consider the re-
quirement for aperiodic event handling with an execution time of 5 and an average inter-
arrival time of 100. We create an equivalent sporadic server task with 10 units execution and
a duration of 100 which has the highest priority. A simple approximate analysis consists of
two parts.

" First, the aperiodic arrives during the real-time virtual processor operation with
90% probability. Since we have allocated twice the average required band-
width, we assume that the probability of an aperiodic arriving when there is no
server capacity is negligibly small. Together with the fact that the aperiodic task
has the highest priority, we can use a a simple M/D/1 queueing formula. We
have the following result [3]:

" W- =pC +C=5.132
2(1-p)

"* where p = 5/100, the utilization by the aperiodic task, and C = 5.
* Secondly, with 10% probability the aperiodic message arrives during the non-

real-time virtual processor operation. Since the average aperiodic inter-arrival
time is ten times longer than the duration of the non-real-time virtual processor,
we assume that at most one aperiodic message can arrive when the virtual
processor is executing. In this case the aperiodic message must wait, on
average, for half the duration of the non-real-time processor including switching
overhead. In this case the response time of the aperiodic message is
5+5.132=10.132.

Finally, considering both cases, the response time of the aperiodic task is
0.9x5.132+0.1x1O.132=5.632. It is important to note that the analysis of aperiodic tasks is
generally complex and may require simulation.
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Since the TDM cycle and sporadic server have the same period, they may be considered as
a single task; i.e., Task r1: C1 = 20; T1 = 100. Therefore, tasks on the control processor are
as shown in Table 5-1:

Task C T D

Ti 20 100 100

T2 78 150 150
T3 30 160 145
T4  10 300 300

Table 5-1: Tasks on the Control Processor

Let tasks , 'T2, and 'r3 share several data structures guarded by semaphores. Suppose the
duration of critical sections accessing shared data structures are bounded by 10 units. Sup-
pose the priority ceiling protocol is used. Since the priority ceiling protocol is assumed to be
implemented, higher-priority tasks are blocked at most once for 10 by lower-priority tasks.

We now check whether or not T3 completes within 145 under rate monotonic priority assign-
ment. Under rate monotonic assignment, r, and T2 have higher-priority than r3. Hence, the
completion of 'r3 can be calculated using the completion time test as follows:

tO = C1 + C2 + C3 = 20 +78 +30 = 128

tj = W3(tO) = 2C, + C2 + C3 = 40 + 78 + 30 = 148

W3 (I) =2C1 + C2 + C3 = 148 =t

Therefore the completion time of r3 is 148, which is later than the required completion time
of 145. In order to meet the deadline of 145 imposed by the maximum allowable latency
requirement of the previous section, we use the deadline monotonic priority assignment.
This makes task 3's priority higher than task t 2's priority, since -r3 has the shorter deadline.

Under this priority assignment, the schedulability of each task can be checked as follows:
Task -z1 can be blocked by lower-priority tasks for 10 , i.e., B1 = 10. The schedulability test
for task t.1 is a direct application of Theorem 1:

-+]- 0.2+0.1=0.3 <1(21/1-1)= 1.0
T1 T1

Therefore, task 'r1 is schedulable. Task T3 is the second highest priority task. Since e3 has a
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deadline shorter than its period, the schedulability test for -r3 can be checked as follows. Let
E3 = (T3 - D3). In the schedulability test of E3 , the utilization of task T2 does not appear,
since C2 has a lower-priority and does not preempt '3. Because C2 has a lower priority, its
critical section can delay t3 by 10. Therefore B3 = 10.

C1 E3 _ B3

C + C3 + E+ - = 0.2+0.188+0.094+0.0625 = 0.545 <2(21/2-1) = 0.828
T, T3 T3 T3

Now consider the third highest priority task C2. From the view point of the rate monotonic
assignment, the deadline monotonic assignment is a "priority inversion". Therefore in the
schedulability test for task T2, the effect of blocking has to include r3's execution time. The
blocking time is B2 = C3+0. The zero indicates that there can be no lower-priority task block-
ing ¶2:

C1 C2 B2-+ +-= 0.2+0.52+0.2 = 0.92 > 2(21/2-1) = 0.828
T1T 2 T2

The schedulability test of Theorem 1 fails for T2 . The schedulability of T4 can be checked by
the following simple test since there is neither blocking or deadline before its end of period:

C, +S2 + C3-+ C4 = 0.2+0.52+0.188+0.033=0.941 > 4(21/4-1) = 0.757
T1 T2 T3 T4

Note that the schedulability test of Theorem 1 fails for both tasks E2 and ' 4 . To determine
their schedulability we use the completion time test. Since 'r1 and C3 must execute at least
once before "r2 can begin executing, the completion time of C2 can be no less than 128:

t0 =C 1 +C 2 +B 2 =20+78 + 30= 128

However, T, is initiated one additional time in the interval (0,128). Taking this additional
execution into consideration, W2(128) = 148:

tI = W2(t 0) = 2C1 + C2 + B2 = 40 + 78 + 30 = 148

Finally, we find that W2(148)=148 and thus the minimum time at which W2 (t) =t is 148. This
is the completion time for r2. Therefore r2 completes its first execution at time 148 and
meets its deadline of 150:

W2(t) = 2CI + C2 + B2 = 40 + 78 + 30 = 148 =t1

Similarly we can check the schedulability of task T4 using the completion time test. It turns
out to be schedulable.
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5.2. Scheduling Messages on FDDI

The messages that exist on the FDDI network are as follows:

Station SI: Sensor data is collected and stored. Every 150, the station transmits 1.0 Mbits of
data. Let the station also transmit 5 Mbits of data every 100 to Stations S2 and S4.

Station 3: Video information: The required end-to-end deadline is assumed to be 100. As an
example we assume a video source of 1024x768 pixels per frame with 24 bits/pixel at 30
frames/second, compressed with a ratio of 16:1. There also exist 3 channels of CD quality
audio. Each channel is sampled at 44.1 Khz with 32 bits/sample. The end-to-end deadline
for audio is also 100.

Consider scheduling of messages at Station 3. We need to partition the end-to-end dead-
lines into subsystem deadlines. The resources that need to be scheduled along the path
between the source and the control processor are: the source interface processor, the net-
work, the destination network interface, the backplane, and the control processor itself. As
discussed in Chapter 5.1.0.1, the simplest way to partition the end-to-end deadline is to al-
low a delay up to a period on each resource.

First consider the video task. Its natural period at 30 frames/sec is 33. If we spend an entire
period on each of the five resources, the end-to-end delay will exceed the limit of 100.
Hence, we transform the sending period to 60 Hz, i.e., we send half a frame every 16.5. For
the resolution given above this works out to no more than 6 of transmission time every
period of 16.5.

Now consider the audio task. Its natural period is roughly one sample every 22
microseconds. This period is too short for the network as well as the packetization proc-
essing. Hence we transform the transmission period to 11; that is, we accumulate 500
samples every 11 units for each of the three sources. This bundling results in efficient net-
work utilization, but requires the destination to buffer and regulate the delivery of the voice
packets at the source frequency. This yields no more than 0.5 of transmission time every
period. The end to end delay over 5 resources will be no more than 55.

Each source of traffic first has to packetize the information. The schedulability analysis of
the tasks running on the source network interface processor is simpler than the analysis of
the control processor tasks since there is no complex data-sharing between tasks. Hence
we will omit the analysis and assume that it is schedulable.

Let the TTRT be 8 and let the walk time WT be 1. The approach to scheduling traffic on
FDDI is as follows. Consider the scheduling of messages in a particular station Si with al-
lofted synchronous bandwidth Hi. Therefore, the station can transmit up to Hi every TTRT.
As discussed in Chapter 4, this can be treated as having another high-priority task with mes-
sage transmission time (TTRT - Hi) and period TTRT. We refer to this task as Token Rota-
tion task 'rtr. Using this framework, schedulability of traffic at each station can be independ-
ently analyzed.
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Let us apply the above technique to messages at Station 3. Let H3 = 4, then •tr

(Cjr.=8-4=4, Ttr = 8). The message set for Station 3 is then:

"* Token Rotation Message Ttr3: Ctr3= 4; Ttr3 = 8
"* Audio Message 113: C13 = 0.5; T13 = 11
"* Video Message 123: C23 = 6; T23 = 16.5

The schedulability of this message set can be checked using the completion time test. The
token rotation message is obviously schedulable. Consider completion of message ; 1:

to = Ctr3 + C13 = 4 + 0.5 =4.5

t1 = W13(t0 ) = COr3 + C13 = 4 + 0.5 = 4.5

Hence '13 is schedulable. Consider completion of message 123:

t4 = CO + C13 + C23 = 4 + 0.5 + 6 = 10.5

t1 = W23(tO) = 2Ctr3 + C13 = 8 + 0.5 + 6 = 14.5

t2 = W23(t 1) = 2Ctr3 + 2C 13 = 8 + 1.0 + 6 = 15.0

t3 = W23(t2) = 2 Ctr3 + 2C13 = 8 + 1.0 + 6 = 15.0 =t2

Hence r23 is schedulable.

Similarly, we can test the schedulability of messages at Station 1. If Station 1 is allotted a
synchronous bandwidth of H1 = 3, the message set at Station 1 can be written as:

* Token Rotation Message trl: Ctr3 = 5; Ttr3 = 8;

*¶ 11: C11 = 10; T11 = 100;
* -;21: C2 1 = 15; T21 = 150;

Note that this message set is also schedulable. The utilization of the network is 60 %.
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6. Conclusion

The rate monotonic theory, and its generalizations have been adopted by national high tech-
nology projects such as the Space Station, and have recently been supported by major
open standards such as the IEEE Futurebus+. In this paper, we have given a synopsis of
GRMS for centralized systems. Furthermore, we have described the basic concepts in the
extensions of GRMS for distributed system scheduling, namely transmission schedulability,
system scheduling consistency, and preemption control. We also introduced the notion of
scheduling abstractions as a technique for analysis of systems that do not directly support
GRMS. Finally, we have provided an application example to illustrate the assignment of
message and task deadlines, task scheduling and message scheduling.
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